Aging-aware Reliable Multiplier Design with Adaptive Hold Logic

نویسندگان

  • V. SATHEESH KUMAR
  • G. BHAVANI
چکیده

Digital multipliers are among the most critical arithmetic functional units. The overall performance of these systems depends on the throughput of the multiplier. Meanwhile, the negative bias temperature instability effect occurs when a pMOS transistor is under negative bias (Vgs= −Vdd), increasing the threshold voltage of the pMOS transistor, and reducing multiplier speed. A similar phenomenon, positive bias temperature instability, occurs when an nMOS transistor is under positive bias. Both effects degrade transistor speed, and in the long term, the system may fail due to timing violations. Therefore, it is important to design reliable high-performance multipliers. In this paper, we propose an aging-aware multiplier design with a novel adaptive hold logic (AHL) circuit. The multiplier is able to provide higher throughput through the variable latency and can adjust the AHL circuit to mitigate performance degradation that is due to the aging effect. Moreover, the proposed architecture can be applied to a columnor row-bypassing multiplier. The experimental results show that our proposed architecture with 16 × 16 and 32 × 32 column-bypassing multipliers can attain up to 62.88% and 76.28% performance improvement, respectively, compared with 16×16 and 32×32 fixed-latency column-bypassing multipliers. Furthermore, our proposed architecture with 16 × 16 and 32 × 32 row-bypassing multipliers can achieve up to 80.17% and 69.40% performance improvement as compared with 16×16 and 32 × 32 fixed-latency row-bypassing multipliers. In addition we removed the tristate buffer from the coloumn by pass multiplier. So that we can reduced the gate count and improve the efficiency and speed and reduce the power consumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing of Multiplier with Improved AHL

The effects aging of digital circuits are came into the focused due to observations made with several experiments and researchers has start working towards making changes for the improvements in base paper architecture. The integrated device suffers with NBTI and PBTI due to CMOS semiconductor properties and it affects the working of different logic operations and in the same context here we ha...

متن کامل

Design And Implementation of High Performance Low Power Efficient Multiplier To Overcome NBTI & PBTI Effects

An identical phenomenon, positive bias temperature instability, happens when an nMOS transistor is under positive bias. Both effects degrade transistor speed, as well as in the lengthy term, the machine may fail because of timing violations. Digital multipliers are some of the most important arithmetic functional models. The general performance of those systems is dependent around the throughpu...

متن کامل

Design and Analysis of Compressor based Dadda tree Multiplication

A multiplié is one of the key hardware blocks in most digital signal processing (DSP) systems. Typical DSP applications where a multiplier plays an important role include digital filtering, digital communications and spectral analysis. Many current DSP applications are targeted at portable, batteryoperated systems, so that power dissipation becomes one of the primary design constraints. There a...

متن کامل

Design and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology

The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...

متن کامل

Design of Fast Integer Pipelined Multipliers for CMOS 64-bit Synchronous and AsynchronousLogic with Adaptable Latency

Adaptive latency multiplier architecture suited for implementation of multiplier.The architecture combines a secondorder carry save and carry select with skipping of the row and split carry using pipelined architecture. The architecture and logic design of CMOS 32-bit synchronous implementation is 2.5 ns. The proposed architecture and VLSI design demonstrates that an adaptive latency multiplier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015